15 research outputs found

    Traffic Scene Perception for Automated Driving with Top-View Grid Maps

    Get PDF
    Ein automatisiertes Fahrzeug muss sichere, sinnvolle und schnelle Entscheidungen auf Basis seiner Umgebung treffen. Dies benötigt ein genaues und recheneffizientes Modell der Verkehrsumgebung. Mit diesem Umfeldmodell sollen Messungen verschiedener Sensoren fusioniert, gefiltert und nachfolgenden Teilsysteme als kompakte, aber aussagekräftige Information bereitgestellt werden. Diese Arbeit befasst sich mit der Modellierung der Verkehrsszene auf Basis von Top-View Grid Maps. Im Vergleich zu anderen Umfeldmodellen ermöglichen sie eine frühe Fusion von Distanzmessungen aus verschiedenen Quellen mit geringem Rechenaufwand sowie eine explizite Modellierung von Freiraum. Nach der Vorstellung eines Verfahrens zur Bodenoberflächenschätzung, das die Grundlage der Top-View Modellierung darstellt, werden Methoden zur Belegungs- und Elevationskartierung für Grid Maps auf Basis von mehreren, verrauschten, teilweise widersprüchlichen oder fehlenden Distanzmessungen behandelt. Auf der resultierenden, sensorunabhängigen Repräsentation werden anschließend Modelle zur Detektion von Verkehrsteilnehmern sowie zur Schätzung von Szenenfluss, Odometrie und Tracking-Merkmalen untersucht. Untersuchungen auf öffentlich verfügbaren Datensätzen und einem Realfahrzeug zeigen, dass Top-View Grid Maps durch on-board LiDAR Sensorik geschätzt und verlässlich sicherheitskritische Umgebungsinformationen wie Beobachtbarkeit und Befahrbarkeit abgeleitet werden können. Schließlich werden Verkehrsteilnehmer als orientierte Bounding Boxen mit semantischen Klassen, Geschwindigkeiten und Tracking-Merkmalen aus einem gemeinsamen Modell zur Objektdetektion und Flussschätzung auf Basis der Top-View Grid Maps bestimmt

    Object Detection and Classification in Occupancy Grid Maps using Deep Convolutional Networks

    Full text link
    A detailed environment perception is a crucial component of automated vehicles. However, to deal with the amount of perceived information, we also require segmentation strategies. Based on a grid map environment representation, well-suited for sensor fusion, free-space estimation and machine learning, we detect and classify objects using deep convolutional neural networks. As input for our networks we use a multi-layer grid map efficiently encoding 3D range sensor information. The inference output consists of a list of rotated bounding boxes with associated semantic classes. We conduct extensive ablation studies, highlight important design considerations when using grid maps and evaluate our models on the KITTI Bird's Eye View benchmark. Qualitative and quantitative benchmark results show that we achieve robust detection and state of the art accuracy solely using top-view grid maps from range sensor data.Comment: 6 pages, 4 tables, 4 figure
    corecore